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An FSGO model of ethane demonstrates how currently used point charge 
models can give the wrong sign for the potential. The Hall point charge 
potential on the other hand is asymptotically accurate. 

An extension of the Hall point charge model to higher Gaussians is demon- 
strated. This extended model potential is shown to be of comparable accuracy 
to that of the spherical Gaussian model. 
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1. Introduction 

The calculation of electrostatic interactions between two or more molecules can 
be simplified. This involves replacing the continuous distribution of charge in each 
molecule by a set of point charges. Integrals over charges are then replaced by 
sums over point charges. 

The number of point charges required will depend on the molecular species 
involved, their distance apart, their relative orientation and finally on the accuracy 
of the approximation desired. In general, for the same degree of approximation, 
the charge regions of closest approach will need more charges. In practice, 
however, calculations are performed at a range of molecular orientations and thus 
no uneven distribution of charges is called for. It is difficult to assess the accuracy 
of a given modelling scheme, this can only be done through a consideration of 
conserved molecular properties such as total charge and dipole moment  [1], and 
electric field [2] or through the study of a number of examples. 
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We demonstrate using an FSGO model of ethane how the standard Mulliken [3] 
and Shipman [6] point charge models can give the opposite sign for the potential 
while the Hall [1] model gives the required asymptotic accuracy. Further, in the 
Hall model it is shown how higher Gaussians may be included. 

2. The Nature of the Molecular Charge Density 

The molecular charge density is observable, in principle, since it can be deduced 
from X-ray Crystallographic experiments. In practice, however, the M.O. one 
electron density p (r) is a more convenient, readily available, ab initio form. It 
expresses the density as a linear combination of products of well-known basis 
functions {G (r)} 

p(r) = 2 E Ps, G(r)6,(r) .  (1) 
s , t  

These product functions G(r)r have a simple form in the case of Gaussian 
basis sets. Here the product Gaussian is again a Gaussian, and 

p(r) = 2 Y~ a~;b~(r) 
c~ 

where 

~b~(r)= E aOk(x--x~)i(y--Y~)i(z--z~)kx~(r) 
i , j , k  

and 

x~(r ) = ( ~-~) 3/2 exp [-fl~ (r - r~)2]. 

is a spherical Gaussian. (This unique property of the product makes the Gaussian 
the only suitable M.O. basis for non-linear molecules.) 

The higher Gaussians are not essential as they can be simulated by lobe functions, 
that is by linear combinations of close spherical Gaussians. This follows from the 
statement of Boys [4] that each single centred, single exponent Gaussian ~G(r) 
can be obtained by acting with a differential operator De (Vr~) on the centre re of 
a spherical Gaussian namely 

4~ (r) = D~ (Vro)X~ (r). 

For lobe functions this operator is replaced by a finite difference operator. It is 
noted then that integrals over lobe functions are linear combinations of integrals 
over spherical Gaussian functions. There is, however, the problem in using lobe 
functions, of defining a suitable separation between the close spherical Gaussians 
making up the function [5]. This problem apart they remain a convenient form 
for performing integrals over various symmetry types using the simple code of 
the spherical Gaussian program. 
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3. FSGO Point Charge Models - Their Accuracy 

The FSGO point charge models considered differ only in their placement of the 
total charge associated with each product Gaussian. We consider the models of 
Hall [1], Shipman [6] and Mulliken [3]. In the Hall model, each product Gaussian 
charge (P.G.C.) is placed at the product Gaussian centre. In other models the 
PGC is divided and placed on the two Gaussian centres involved in the product. 
In the Shipman model, the charge is divided so as to conserve dipole moment, 
while in an application of the Mulliken population analysis, the PGC is equally 
divided between the two centres. Thus all models conserve the total charge of 
the PGC while only the Hall and Shipman models conserve the dipole moment. 
Further the Gaussian centres of charge are only conserved in the Hall model. 
An ordering of accuracy of models is thus expected to be Hall, Shipman and 
finally Mulliken. 

We shall demonstrate the relative accuracies of these models using a simple FSGO 
basis of just over minimal size [7] in which, except for LiH, two Gaussians are 
fixed on each heavy (non hydrogen) nucleus, and one is placed on each bond. In 
LiH the Gaussian model consists of two spherical Gaussians along the LiH bond. 
Optimisation of both the Gaussian exponents and non-nucleus-fixed positions is 
performed by the Opit program [8]. The molecular properties given by an 
accurate analysis of the FSGO one-electron density are in no way close to 
experiment but the FSGO one-electron density is a particularly compact form 
on which to compare the various point charge models. 

Table 1. The  molecular geometries in Bohr  (as used by Snyder and Basch 
[10]) with axis of symmetry  along the z axis and, in the case of the water 
molecule, in the y - z plane with the oxygen atom at the origin 

Molecule 

LiH RLiH = 3.0200 
H 2 0  R O H  = 1.8088 H O H  = 104.5230 
CzH 2 R C C  = 2.2734 R C H  = 2.0030 
BF RBF = 2.3905 

C2H 6 R C C  = 2.9159 R C H  = 2.0825 CCH = 109.6407 

Table 2. The  floating Gaussian basis set with the atom, bond or axis on which 
each Gaussian lies (02 denotes  two basis functions at centre O) 

Molecule Basis [s][Px][Py][Pj 

LiH 
HzO (s Gaussian) 
H 2 0  (s + p Gaussian) 
C2H2 
BF 
C2H6 

[(Li--H) 2] 

[02, O - - H ,  z axis, x axis fixed 4-0.05 Bohr] 
[02, O- -H] [O] [  - ][O] 
[C 2, C - - C ,  C--H][C][C] 
[F 2, B 2, F--B][F][F][F, B] 
[C 2, C - -C ,  C - - H ]  

The  H 2 0  (s 4-p Gaussian) model  does not contain a Py Gaussian.  
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FSGO calculations on LiH, H20 and C2H6 a r e  presented in Table 3. The accurate 
electrostatic potentials on various exit lines from a heavy nucleus are compared 
with those calculated from each of the Hall, Shipman and Mulliken point 
charges. 

Table 3. The spherical Gaussian point charge model potentials of Hall VH, Shipman Vs 
and Mulliken VM compared with the wavefunction potential V, s V ~ t - - - ( V - V H ) / V  

LiH 
The potential along the perpendicular to Li- -H through Li where x = distance from Li. 

xBohr V s VH e Vs s VM 

2.0 1.92168 (-1)  1.34 (-2)  1.76 (-2)  4.34 (-2)  
4.0 3.73619 (-2)  4.79 (-4)  5.44 (-3)  3.36 (-2)  
6.0 1.23907 (-2)  0 5.22 (-3)  3.44 (-2)  

0 denotes accurate to six significant figures, that is s V < I . 0 0  (-5). 

H20 (s Gaussian) 
The potential along a O- -H  bond (in that direction) where x =distance from 0. 

xBohr V s VH e Vs s V M 

2.0 4.14645 (0) 1.51 (-1)  6.84 (-2)  7.34 (-2)  
4.0 4.39221 (-2)  1.30 (-3)  -4 .10 (-1)  -3.30 (-1)  
6.0 1.07969 (-2)  0 -3 .52 (-1)  -2 .19 (-1)  

H20 (s Gaussian) 
The potential along the bisector of H()H (away from H) where x =distance from 0. 

x Bohr V eVH eVs  eVM 

2.0 -6.16993 (-2)  -7 .69 (-1)  7.24 (-1)  1.01 (0) 
4.0 -2.06098 (-2)  -1.94 (-5)  4.75 (-1)  6.97 (-1)  
6.0 -8.64897 (-3)  0 3.01 (-1)  5.38 (-1)  

C2H6 
The potential along the reflected C--H bond (i.e. a line in an HCC plane at 70 ~ to CC 
axis) where x =distance from C. 

x Bohr V sVH eVs  eVM 

2.0 6.09720 (-2)  3.90 (0) 4.99 (0) 5.00 (0) 
4.0 -8.57218 (-3)  -2 .09 (-2)  -1 .84 (0) -1.87 (0) 
6.0 -1.90016 (-3)  0 -2 .04 (0) -2.06 (0) 

C2H6 
The potential perpendicular to a HCC plane through a C where x =distance from C. 

x Bohr V eVH g g  S EVM 

2.0 9.58996 (--2) 3.37 (0) 3.35 (0) 3.35 (0) 
4.0 --2.73851 (--3) --9.37 (--2) --1.37 (0) --1.38 (0) 
6.0 1.37290 (-4)  0 1.01 (1) 1.02 (1) 
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The results quoted are the relative errors e VA of the approximate potential VA 
to the accurate potential V, namely we quote eVa = ( V - V a ) / V A .  Note that 
e Va > 1 implies that the accurate potential V and the approximate potential VA 
have opposite signs. We quote ]eVa[ in the script. 

In the cases considered, the Hall model potential is consistently better than the 
Shipman and Mulliken model potentials at distances of 4 Bohr and 6 Bohr from 
a heavy nucleus. Further, the Hall model potential gives a relative error at 
6 Bohr (4 Bohr) from a heavy nucleus of 1 .00E-  5(1.00E-1) or better, while 
at 6 Bohr the Shipman and Mulliken models may give the wrong sign (see C2H6 _1_ 
HCC plane). 

4. Extension of the FSGO Point Charge Models  to Higher Gaussians - the 
Accuracy 

A method of extension of the point charge models to higher Gaussians can be 
illustrated by reference to the Hall model. 

For FSGO's the electron density 

p (r) = 2 E a~x~ (r) 

is approximated by 

pn(r) = 2 • a~6(r - r~). 

We suggest for higher Gaussians that the electron density 

p (r) = 2 Y. aeD~ (V r~)Xe (r) (2) 

is approximated by 

pn(r) = 2 Y, aeDe(~7~)~3(r-re) (3) 
ot  

that is, in the case of s and p type basis sets, by point charges 6(r -r~) ,  point 
dipoles O/Oxe 6(r - re) and point quadrupoles 02/Ox~Oy~ ~(r -r~) ,  
O2/ax~ 6(r -r~) .  We note how this relates to the lobe functions in which, for 
example, the difference between two close spherical Gaussians simulates a p type 
Gaussian. The point charge component obtained from the square of this simulated 
Gaussian will consist of three equispaced charges -q, 2q+r, -q, that is a 
quadrupole plus a charge. The above operator method would involve 

02 

namely would give the quadrupole plus charge of 

1 0 2 \ �9 
~x2 +fl@ 6( r - r~ )  
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Table 4. The s and p type Gaussian point pole model potentials of Hall Vm Hall (just charges) VHO 
Shipman (just charges) Vsc and Mulliken (just charges) VMC compared with the wavefunction 
potential V, e VH = ( V -  VH) / V 

HzO (s and p Gaussian) 
The potential along a O - - H  bond (in that direction) where x =distance from O. 

x Bohr V e VH e VHc e Vsc e VM 

2.0 4.38594 (0) 2.76 (--2) 7.23 (--2) 3.71 (--2) 3.56 (--2) 
4.0 1.22787 (-1)  0 3.16 (-1)  2.06 (-1)  1.95 (-1)  
6.0 3.86932 (-2)  0 4.09 (-1)  3.18 (-1)  3.03 (-1)  

0 denotes accurate to six significant digits, that is e V < l . 0 0  (-5)  

H20 (s and p Gaussian) 
The potential along the bisector of HOH (away from H) where x =distance from O. 

x Bohr V eVH eV~c  eVsc e V h  

2.0 -2.89558 (-1)  -2.41 (-1)  9.53 (-1)  7.89 (-1)  7.66 (-1)  
4.0 -8.98833 (-2)  0 7.47 (-1)  6.61 (-1)  6.41 (-1)  
6.0 -4.04313 (-2)  0 6.68 (-1)  6.06 (-1)  6.86 (-1)  

C2H2 
The potential along a perpendicular to C--C through a C where x =distance from C. 

x Bohr V eVH eVHc eVsc eVM 

2.0 1.29433 (--2) 4.86 (0) 5.85 (--1) 1.05 (0) 1.63 (0) 
4.0 --2.25221 (--2) --2.22 (--4) 5.57 (--1) 6.15 (--1) 5.34 (--1) 
6.0 --9.20356 (--3) 0 5.12 (--1) 5.51 (--1) 4.76 (--1) 

BF 
The potential along a perpendicular to B- -F  through F where x =distance from F. 

x Bohr V eVn  eVHc eVsc eVM 

2.0 7.76544 (-2)  -3.70 (-1) 3.09 (0) 3.39 (0) 3.30 (0) 
4.0 1.88715 (-2)  -5.25 (-4)  2.54 (0) 2.95 (0) 2.87 (0) 
6.0 7.72418 (-3)  0 2.22 (0) 2.59 (0) 2.53 (0) 

BF 
The potential along a perpendicular to B- -F  through B where x =distance from B. 

x Bohr V eVi~ eVHc eVsc gV M 

2.0 3.07576 (-1)  5.15 (-2)  2.92 (-1)  3.51 (-1)  3.75 (-1)  
4.0 6.43236 (-2)  4.07 (-4)  2.51 (-1)  3.65 (-1)  3.88 (-1)  
6.0 2.40465 (-2)  0 3.09 (-1)  4.25 (-1)  4.45 (-1)  
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as before. Indeed the large -196.987, 397.673, -196.987 charges of the Hall 
point charge model of water given by Tait and Hall [1] have exactly this property. 

FGO (s and p Gaussian) calculations on H20, C2H2 and BF in Table 4 illustrate 
that the accuracy of the higher Gaussian Hall model is comparable to that of the 
spherical Gaussian one. Namely the potential V~ at a distance of 6 Bohr (4 Bohr) 
from a heavy nucleus gives a relative error of 1 .00E-5(1 .00E-3)  or better. 
Further, we note that the charges on their own are insufficient for higher 
Gaussians as indicated by the potentials VHc. We have also displayed the 
charge-only Shipman and charge-only Mulliken models for completeness. 

5. Mathematical Analysis of the Extended Hall Model 

We may illustrate the asymptotic accuracy of the extended Hall model potential 
or, indeed, that of the electric field or electric field gradient by an analysis little 
different from that given by Tait and Hall [1]. 

The accurate density is given by Eq. (2) and the approximate density is given by 
Eq. (3). We are thus interested in the error density 

e(r) = 2 ~ a~D~(Vr~)[x~(r)-6(r-r~)] 
c ~  

which leads to an error in the moment xiyiz k of 

f xlyizke(r)dr--2~a~D~(Vr~)[1-exp(-~fl V2~)]xiy~zk 

(see Appendix A) namely to the conservation of total charge and dipole moment. 

In general, the model preserves the moment P(r) where V2P = 0. 

The error potential is 

f le(r)dr=2~a~D~(Vr~ 

where 

r ,  o o  

Fn(a) -- Jl tEn exp ( -a t  2) dt 

has an asymptotic form of exp (-a)/2a and 

~a  P,(a) = -Fn+l(a). 

The error potential is thus seen to decay exponentially, and therefore at a faster 
rate than the potential itself which decays as an inverse power. The error electric 
field and error electric field gradient also decay at an exponential rate compared 
to the inverse power decay of the accurate value. Further, the error potential and 
error electric field are linear combinations of the/~,(a) terms and so available 
codes for the evaluation of the higher Gaussian basis potential and electric field 
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may be used to calculate the point charge potential and electric field. Just replace 
a call of Fn(a) by zero. This may involve changing just one line of code. 

6. Implementation of the Extended Hall Model 

In the extended Hall model it is computationally more convenient to differentiate 
the basis Gaussians rather than their products. 

We may express Eq. (1) as 

0 (r) = 2 Y Ps,Ds (V~)Xs (r)D,(V,,)X, (r) 
S,t 

where O~(r) has been replaced by Ds(Vrs)x~(r). Thus 

p(r) = 2 Z PstDs(V~,)D,(V,-,)[xs(r)x,(r)]. 
$,t 

The product spherical Gaussian xs(r)x t (r)  is itself a Gaussian of centre r,t = 
(cesr~+atrt)/(aa+o~t), exponent 20Gt=(oG+oh)  and of total charge S~t = 
~Xs(r)xt(r)  dr (note that this is different from the overlap Ts,---~41s(r)~O,(r)dr 
between the two basis functions t~s(r) and Or(r)). 

Thus p(r)  = 2 ~s,tPstDs(Vr,)D,(Vr,)[Sstxs,(r)]. 

The extended Hall model replaces this continuous distribution by 

pn(r )  = 2 Y PstOs(Vr~)Dt(Vr,)[Ss~(r- rst)] 
$,t 

which has charge component 

pHc(r)  = 2 Y. P, t [D,  (V~,)Dt(V,,)S,,]a(r - r , , )  
s,t 

= 2 Y. P, ,Ts~3(r-r , , )  
s,t 

and thus the form of the charge only component of the extended Hall model is 
exactly that of the original Hall model, as noted by Yoffe [9]. (This indeed follows 
for the Shipman and Mulliken models.) 

For computational convenience we proceed as follows. The overlap Sst is a 
function of the displacement dst -= r, - rt between the two product Gaussian centres 

2as, 

O[ t 
Vr ,  = ~ Vrs~ -- Vd~, 
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thus 

pn(r )=2~P,  tDs~a~t , . + V r  Dt 2--~tVr~,-Vd~ [S~,(dst)*8(r-r~t)? (4) 

while the one electron property 

I f(r)oz(r) dr=2 ; , , D ~ ( - ~  t V~,+ Va~,) D~(2-~ ~ Vrs,-Va~,)[S,,(ds,),(r,,)]. 

We may now expand these expressions in terms of derivatives of S,t and f. 

Taking the example of the square of a p Gaussian we have, dropping the leading 
coefficient, the contribution 6PH to the point charge model oH(r) is given by 

= 4- Sst(d,,)6(r-r,,) 
t OXst OUstJ\2OGt OXst 

0 2 

,,.,,CestJ 2test OUst 
O 2 

Ou~, S~,6 (r - rs,) 

which, on setting s = t, eliminates the middle dipole term and gives a charge and 
quadrupole at the centre rs as before. 

7. Conclusion 

Care must be exercised in using the Mulliken and Shipman point charge models 
to evaluate the molecular electrostatic potential since, in some important regions, 
they have poor accuracy and may give the wrong sign. On the other hand the Hall 
point charge model potential is asymptotically accurate and in the cases con- 
sidered gives a relative error of 1.00E - 5(1.00E - 1) or better at 6 Bohr (4 Bohr). 

An extension of the Hall model to higher Gaussians is made. There follows no 
loss in the asymptotic convergence of potential, electric field and electric field 
gradient and further, the same moments of charge are conserved. 

Appendix A 

~ (2s)! . . ,  1/2 
exp (;) i 

oo 

Thus 

x iexp ( -a (x - f l )2 )dx=\ -~ /  f_oo(x +fl) iexp(-ax2)dx 

(5) 
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which, on expanding (x +/3) / and using Eq. (5) 
[i/2l i ! = E ~,-2s 
s=0 (i - 2s)[(4a)Ss [ 
[ i / 2 ]  1 ( 1  2~_~2) ~ 

-- T., r  S = 0  �9 
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